
CS 4530: Fundamentals of Software Engineering

Module 03 Best Practices for Effective Programmers

Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences

1

© 2023 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson
• By the end of this lesson you should be able to:

• Describe the purpose of our best practices
• List 5 principles for designing readable code, with

examples
• Identify some violations of the practices and suggest

ways to mitigate them

2

Use Design As a Way of Communicating
Organization

3

• Software systems must be comprehensible by
humans

• Which humans?
• The other members of your team
• The folks who will maintain and modify your system
• Management
• Your clients
• and ...
• You, a week from now or 6 weeks from now

Use Design to Control Complexity
• Software systems must be comprehensible by

humans
• Why? Software needs to be maintainable

• continuously adapted to a changing environment
• Maintenance takes 50–80% of the cost

• Why? Software needs to be reusable
• Economics: cheaper to reuse than rewrite!

4

Three Scales of Design

5

• key questions: what are the pieces? how do they fit
together to form a coherent whole?

The Structural Scale

• key questions: how do the pieces interact? how are
they related?

The Interaction Scale

• key question: how can I make the actual code easy
to test, understand, and modify?

The Code Scale

Today’s topic: design principles at the code
scale

6

• key questions: what are the pieces? how do they fit
together to form a coherent whole?

The Structural Scale

• key questions: how do the pieces interact? how are
they related?

The Interaction Scale

• key question: how can I make the actual code easy
to test, understand, and modify?

The Code Scale

Coupling is the biggest source of complexity
at the code level
• Two pieces of code are coupled if a change in one

demands a change in the other.
• A coupling represents an agreement between the two

pieces of code.
• They may agree on:

• names
• order (e.g. of arguments)
• meaning (e.g. meaning of data)
• algorithms

• The more two pieces of code are coupled, the harder
they are to understand and modify: you have to
understand both to understand either of them.

7

There's a fancy
word for this:
connascence
(meaning "born
together")

More coupling means
less readability, less
modifiability

Five general-purpose design principles

8

Five General Principles
1. Use Good Names
2. Make Your Data Mean Something
3. One Method/One Job
4. Don't Repeat Yourself
5. Don't Hardcode Things That Are
Likely To Change

Principle 1. Use Good Names
• The name of a thing is a first clue to the reader

about what the thing means.
• often, it's the only clue

• Use good names for
• constants
• variables
• functions/methods
• data types

9

Use Good Names for Variables and
Types

10

const temp : Temperature
const loc : SensorLocation

const t : number
const l : number

const temp : number
const loc : number

Use Good Names for Functions and Methods

11

function checkLine (line) : boolean

function lineIsTooLong (line) : boolean

Use Good Names for Functions and Methods
• Use noun-like names for functions or methods that

return values, e.g.

• not:

• Reserve verb-like names for functions or methods
that perform actions, like

12

const c = new Circle(initRadius)
const a = c.diameter()

const a = c.calculateDiameter()

table1.addItem(student1,grade1)

Principle 2. Make Your Data Mean
Something
• You need to do three things:

1. Decide what part of the information in the
"real world" needs to be represented as data

2. Decide how that information needs to be
represented as data

3. Document how to interpret the data in your
computer as information about the real world

13

Example:
• Right now I am wearing a red shirt, and I've decided

I need to represent that fact in my program.
• How should I represent that in my program?
• We need to decide:

• how to represent shirts (including their color)
• how to represent colors
• how to represent my shirt

14

We need to write something like
this:

15

type Shirt = {
 /** the color of the shirt */
 color: Color
}

type Color = { ... } // `red` is defined in here

/** My shirt */
let myShirt: Shirt

myShirt.color = red

The Big Picture

• How do we know that these are connected?
• Answer: we have to write it down.
• In our Typescript infrastructure, we do that with the

comments.

16

My shirt is
red

representation

interpretation

type Shirt = {
 /** the color of the shirt */
 color: Color

}
type Color = { ... }

/** My shirt */
let myShirt: Shirt
myShirt.color = red

Another Example: what do (x,y) mean?

•The center?
•Upper-left-hand corner?
•Does y grow in the up or down direction?
•And what about the units?

• (Pixels? Scaled pixels? Something else?) 17

representation

interpretation

export interface BoundingBox {
 x: number;
 y: number;
 width: number;
 height: number;
};

???

Another example: What does an object
represent?
• What does an object of class Car represent?

• a model of car (e.g. Dodge, Ford, Toyota)?
• a particular car (my 2019 Toyota, VIN = 456789)?

• What does an object of class Wheel represent?
• a model of tire? (Goodyear GoodGrips14)
• a particular tire? (Goodyear GoodGrips14 SN = 345678)

• What does "has" represent?
• depends on what Car and Wheel represent
• this may affect the navigability of the association

• (can you get from a car object to the associated wheels? Can
you get from a wheel to the car that it’s on?)

18

Principle 3: One Method/One Job
• Each class, and each method of that class, should

have one job, and only one job
• If your method has more than one job, split it into 2

methods. Why?
• You might want one part but not the other
• It's easier to test a method that has only one job

• You call both of them if you need to.
• or write a single method that calls them both

• Same thing for classes.

19

Principle 4: Don't Repeat Yourself
• If you have some quantity that you use more than

once, give it a name and use the name.
• That way you only need to change it in one place!
• And of course you should use a good name
• If you have some task that you do in many places,

make it into a procedure.
• If the tasks are slightly different, turn the

differences into parameters.

20

A real example

21

function testequal <T> (testname: string, actualVal: T, correctVal: T) {
test(testname, () => { expect(actualVal).toBe(correctVal) })

}

describe('tests for countOfLocalMorks', function () {
testequal('empty crew',countOfLocalMorks(ship1),0)
testequal('just Mork',countOfLocalMorks(ship2),1)
testequal('just Mindy',countOfLocalMorks(ship3),0)
testequal('two Morks',countOfLocalMorks(ship4),2)
testequal('drone has no Morks',countOfLocalMorks(drone1),0)

})

Principle 5:
Don't Hardcode Things That Are Likely To Change
• General strategy: If there something that might

change, give it a name
• if it's not already a "thing", refactor to make it a "thing“

• Let’s look at a couple of examples.

22

• Replace magic numbers with good names

Replace magic numbers with good names

23

const salesTaxRate = 1.06
const salesPrice = netPrice * salesTaxRate

const salesprice = netPrice * 1.06

Example
• Imagine we are computing income tax in a state

where there are four rates:
• One on incomes less than $10,000
• One on incomes between $10,000 and $20,000
• One on incomes between $20,000 and $50,000
• One on incomes greater than $50,000

• You might write something like

24

You might write something like

• What might change?
• The boundaries of the tax brackets might change
• The number of brackets might change

25

function grossTax(income: number): number {
if ((0 <= income) && (income <= 10000)) { return 0 }
else if ((10000 < income) && (income <= 20000))
{ return 0.10 * (income - 10000) }
else if ((20000 < income) && (income <= 50000))
{ return 1000 + 0.20 * (income - 20000) }
else { return 7000 + 0.25 * (income - 50000) }

}

So let's represent our data
differently

26

// defines the tax bracket for income lower < income <= upper.
// if upper is undefined, then lower < income (no upper bound)
type TaxBracket = {

lower: number,
upper: number | undefined,
base : number
rate : number

}

const brackets : TaxBracket[] = [
{lower:0, upper:10000, base:0, rate:0},
{lower:10000, upper:20000, base:0, rate:0.10},
{lower:20000, upper:50000, base:1000, rate:0.20},
{lower:50000, upper: undefined, base:7000, rate:0.25}

]

And now it's easy to rewrite our function

27

// defines the incomes covered by a bracket
function isInBracket(income:number, bracket:TaxBracket) : boolean {

if (bracket.upper === undefined)
{ return (bracket.lower <= income) }
else
{ return ((bracket.lower <= income) && (income < bracket.upper))}

}

function income2bracket(income: number, brackets: Bracket[]): Bracket {
 return brackets.find(b0 => isInBracket(income, b0))

}

function taxByBracket(income:number,bracket:TaxBracket) : number {
return bracket.base + bracket.rate * (income - bracket.lower)

}

function grossTax2 (income:number, brackets: TaxBracket[]) : number {
return taxByBracket(income,income2bracket(income,brackets))

}

Review: Learning Objectives for this Lesson
• You should now be able to:

• Describe the purpose of our best practices
• List 5 principles for designing readable code, with

examples
• Identify some violations of the practices and suggest

ways to mitigate them

28

Additional Material

29

Examples of Design at the Structural Scale

30

• Object-Oriented
• Pipeline
• Pipeline + Database
• Layered

Object-Oriented Architecture
• The entities in the program correspond to entities

in the real world.
• Example: a library system might have classes for

• A holding (several books, eg: “7 copies of Moby-Dick”)
• An individual item (“copy #3 of Moby-Dick”)
• A card-holder (“Avery Fischer, library card #12345, …”)
• A borrowing (“Avery Fischer borrowed copy #3 of Moby-

Dick on 9/1/22”)

31

Pipeline Architecture
• The pieces correspond to stages in

the transformation of data in the
system

• Good for complex straight-line
processes, e.g. image processing

32

Pipeline + Database
• Stages in the pipeline share data

through a database

33

database

Layered Architecture
• The pieces correspond to

level of concern.
• Each layer depends on

services from the layer
or layers below

34Data/Control Flow

ResponseRequest

Layered Architecture (contd)
• Typical organization for

operating systems
• Layers communicate

through procedure calls and
callbacks (sometimes called
"up-calls")

35

Design at the Interaction Scale
• Roughly what’s typically called “Design Patterns”
• We’ll talk about some OO Design Patterns in the

next lecture.
• But we’ll see interaction-scale patterns in many

domains, not just OOP.

36

	CS 4530: Fundamentals of Software Engineering��Module 03 Best Practices for Effective Programmers
	Learning Objectives for this Lesson
	Use Design As a Way of Communicating Organization
	Use Design to Control Complexity
	Three Scales of Design
	Today’s topic: design principles at the code scale
	Coupling is the biggest source of complexity at the code level
	Five general-purpose design principles
	Principle 1. Use Good Names
	Use Good Names for Variables and Types
	Use Good Names for Functions and Methods
	Use Good Names for Functions and Methods
	Principle 2. Make Your Data Mean Something
	Example:
	We need to write something like this:
	The Big Picture
	Another Example: what do (x,y) mean?
	Another example: What does an object represent?
	Principle 3: One Method/One Job
	Principle 4: Don't Repeat Yourself
	A real example
	Principle 5:�Don't Hardcode Things That Are Likely To Change
	Replace magic numbers with good names
	Example
	You might write something like
	So let's represent our data differently
	And now it's easy to rewrite our function
	Review: Learning Objectives for this Lesson
	Additional Material
	Examples of Design at the Structural Scale
	Object-Oriented Architecture
	Pipeline Architecture
	Pipeline + Database
	Layered Architecture
	Layered Architecture (contd)
	Design at the Interaction Scale

